Metamath Proof Explorer


Theorem breldmg

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion breldmg ACBDARBAdomR

Proof

Step Hyp Ref Expression
1 breq2 x=BARxARB
2 1 spcegv BDARBxARx
3 2 imp BDARBxARx
4 eldmg ACAdomRxARx
5 3 4 imbitrrid ACBDARBAdomR
6 5 3impib ACBDARBAdomR