Metamath Proof Explorer


Theorem brlmici

Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmici FRLMIsoSR𝑚S

Proof

Step Hyp Ref Expression
1 ne0i FRLMIsoSRLMIsoS
2 brlmic R𝑚SRLMIsoS
3 1 2 sylibr FRLMIsoSR𝑚S