Metamath Proof Explorer


Theorem bropabg

Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)

Ref Expression
Hypotheses bropabg.xA x=Aφψ
bropabg.yB y=Bψχ
bropabg.R R=xy|φ
Assertion bropabg ARBAVBVχ

Proof

Step Hyp Ref Expression
1 bropabg.xA x=Aφψ
2 bropabg.yB y=Bψχ
3 bropabg.R R=xy|φ
4 3 bropaex12 ARBAVBV
5 1 2 3 brabg AVBVARBχ
6 4 5 biadanii ARBAVBVχ