Metamath Proof Explorer


Theorem brrpssg

Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion brrpssg BVA[⊂]BAB

Proof

Step Hyp Ref Expression
1 elex BVBV
2 relrpss Rel[⊂]
3 2 brrelex1i A[⊂]BAV
4 1 3 anim12i BVA[⊂]BBVAV
5 1 adantr BVABBV
6 pssss ABAB
7 ssexg ABBVAV
8 6 1 7 syl2anr BVABAV
9 5 8 jca BVABBVAV
10 psseq1 x=AxyAy
11 psseq2 y=BAyAB
12 df-rpss [⊂]=xy|xy
13 10 11 12 brabg AVBVA[⊂]BAB
14 13 ancoms BVAVA[⊂]BAB
15 4 9 14 pm5.21nd BVA[⊂]BAB