| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( B e. V -> B e. _V ) |
| 2 |
|
relrpss |
|- Rel [C.] |
| 3 |
2
|
brrelex1i |
|- ( A [C.] B -> A e. _V ) |
| 4 |
1 3
|
anim12i |
|- ( ( B e. V /\ A [C.] B ) -> ( B e. _V /\ A e. _V ) ) |
| 5 |
1
|
adantr |
|- ( ( B e. V /\ A C. B ) -> B e. _V ) |
| 6 |
|
pssss |
|- ( A C. B -> A C_ B ) |
| 7 |
|
ssexg |
|- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
| 8 |
6 1 7
|
syl2anr |
|- ( ( B e. V /\ A C. B ) -> A e. _V ) |
| 9 |
5 8
|
jca |
|- ( ( B e. V /\ A C. B ) -> ( B e. _V /\ A e. _V ) ) |
| 10 |
|
psseq1 |
|- ( x = A -> ( x C. y <-> A C. y ) ) |
| 11 |
|
psseq2 |
|- ( y = B -> ( A C. y <-> A C. B ) ) |
| 12 |
|
df-rpss |
|- [C.] = { <. x , y >. | x C. y } |
| 13 |
10 11 12
|
brabg |
|- ( ( A e. _V /\ B e. _V ) -> ( A [C.] B <-> A C. B ) ) |
| 14 |
13
|
ancoms |
|- ( ( B e. _V /\ A e. _V ) -> ( A [C.] B <-> A C. B ) ) |
| 15 |
4 9 14
|
pm5.21nd |
|- ( B e. V -> ( A [C.] B <-> A C. B ) ) |