Metamath Proof Explorer
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
|
|
Ref |
Expression |
|
Hypotheses |
brsingle.1 |
|
|
|
brsingle.2 |
|
|
Assertion |
brsingle |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsingle.1 |
|
| 2 |
|
brsingle.2 |
|
| 3 |
|
df-singleton |
|
| 4 |
|
brxp |
|
| 5 |
1 2 4
|
mpbir2an |
|
| 6 |
|
velsn |
|
| 7 |
1
|
ideq |
|
| 8 |
6 7
|
bitr4i |
|
| 9 |
1 2 3 5 8
|
brtxpsd3 |
|