Metamath Proof Explorer


Theorem brxrncnvep

Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion brxrncnvep A V B W C X A R E -1 B C C A A R B

Proof

Step Hyp Ref Expression
1 brxrn A V B W C X A R E -1 B C A R B A E -1 C
2 brcnvep A V A E -1 C C A
3 2 anbi1cd A V A R B A E -1 C C A A R B
4 3 3ad2ant1 A V B W C X A R B A E -1 C C A A R B
5 1 4 bitrd A V B W C X A R E -1 B C C A A R B