Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. (Contributed by Scott Fenton, 24-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwndiff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdim1 | |
|
2 | 1 | 3ad2ant1 | |
3 | simp11 | |
|
4 | simp12 | |
|
5 | simp13 | |
|
6 | simp2l | |
|
7 | simp2r | |
|
8 | axsegcon | |
|
9 | 3 4 5 6 7 8 | syl122anc | |
10 | simpl11 | |
|
11 | simpl13 | |
|
12 | simpr | |
|
13 | simpl2l | |
|
14 | simpl2r | |
|
15 | cgrdegen | |
|
16 | 10 11 12 13 14 15 | syl122anc | |
17 | biimp | |
|
18 | 17 | necon3d | |
19 | 18 | com12 | |
20 | 19 | 3ad2ant3 | |
21 | 20 | adantr | |
22 | 16 21 | syld | |
23 | 22 | anim2d | |
24 | 23 | reximdva | |
25 | 9 24 | mpd | |
26 | 25 | 3exp | |
27 | 26 | rexlimdvv | |
28 | 2 27 | mpd | |