Metamath Proof Explorer


Theorem btwndiff

Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. (Contributed by Scott Fenton, 24-Sep-2013)

Ref Expression
Assertion btwndiff NA𝔼NB𝔼Nc𝔼NBBtwnAcBc

Proof

Step Hyp Ref Expression
1 axlowdim1 Nu𝔼Nv𝔼Nuv
2 1 3ad2ant1 NA𝔼NB𝔼Nu𝔼Nv𝔼Nuv
3 simp11 NA𝔼NB𝔼Nu𝔼Nv𝔼NuvN
4 simp12 NA𝔼NB𝔼Nu𝔼Nv𝔼NuvA𝔼N
5 simp13 NA𝔼NB𝔼Nu𝔼Nv𝔼NuvB𝔼N
6 simp2l NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvu𝔼N
7 simp2r NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvv𝔼N
8 axsegcon NA𝔼NB𝔼Nu𝔼Nv𝔼Nc𝔼NBBtwnAcBcCgruv
9 3 4 5 6 7 8 syl122anc NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBcCgruv
10 simpl11 NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NN
11 simpl13 NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NB𝔼N
12 simpr NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼Nc𝔼N
13 simpl2l NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼Nu𝔼N
14 simpl2r NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼Nv𝔼N
15 cgrdegen NB𝔼Nc𝔼Nu𝔼Nv𝔼NBcCgruvB=cu=v
16 10 11 12 13 14 15 syl122anc NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBcCgruvB=cu=v
17 biimp B=cu=vB=cu=v
18 17 necon3d B=cu=vuvBc
19 18 com12 uvB=cu=vBc
20 19 3ad2ant3 NA𝔼NB𝔼Nu𝔼Nv𝔼NuvB=cu=vBc
21 20 adantr NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NB=cu=vBc
22 16 21 syld NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBcCgruvBc
23 22 anim2d NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBcCgruvBBtwnAcBc
24 23 reximdva NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBcCgruvc𝔼NBBtwnAcBc
25 9 24 mpd NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBc
26 25 3exp NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBc
27 26 rexlimdvv NA𝔼NB𝔼Nu𝔼Nv𝔼Nuvc𝔼NBBtwnAcBc
28 2 27 mpd NA𝔼NB𝔼Nc𝔼NBBtwnAcBc