Metamath Proof Explorer


Theorem btwnswapid

Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwnswapid NA𝔼NB𝔼NC𝔼NABtwnBCBBtwnACA=B

Proof

Step Hyp Ref Expression
1 simpl NA𝔼NB𝔼NC𝔼NN
2 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
3 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
4 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
5 axpasch NB𝔼NA𝔼NC𝔼NA𝔼NB𝔼NABtwnBCBBtwnACx𝔼NxBtwnAAxBtwnBB
6 1 2 3 4 3 2 5 syl132anc NA𝔼NB𝔼NC𝔼NABtwnBCBBtwnACx𝔼NxBtwnAAxBtwnBB
7 simpll NA𝔼NB𝔼NC𝔼Nx𝔼NN
8 simpr NA𝔼NB𝔼NC𝔼Nx𝔼Nx𝔼N
9 simplr1 NA𝔼NB𝔼NC𝔼Nx𝔼NA𝔼N
10 axbtwnid Nx𝔼NA𝔼NxBtwnAAx=A
11 7 8 9 10 syl3anc NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAx=A
12 simplr2 NA𝔼NB𝔼NC𝔼Nx𝔼NB𝔼N
13 axbtwnid Nx𝔼NB𝔼NxBtwnBBx=B
14 7 8 12 13 syl3anc NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnBBx=B
15 11 14 anim12d NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnBBx=Ax=B
16 eqtr2 x=Ax=BA=B
17 15 16 syl6 NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnBBA=B
18 17 rexlimdva NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnBBA=B
19 6 18 syld NA𝔼NB𝔼NC𝔼NABtwnBCBBtwnACA=B