Metamath Proof Explorer


Theorem btwnswapid2

Description: If you can swap arguments one and three of a betweenness statement, then those arguments are identical. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion btwnswapid2 NA𝔼NB𝔼NC𝔼NABtwnBCCBtwnBAA=C

Proof

Step Hyp Ref Expression
1 btwncom NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB
2 3anrev A𝔼NB𝔼NC𝔼NC𝔼NB𝔼NA𝔼N
3 btwncom NC𝔼NB𝔼NA𝔼NCBtwnBACBtwnAB
4 2 3 sylan2b NA𝔼NB𝔼NC𝔼NCBtwnBACBtwnAB
5 1 4 anbi12d NA𝔼NB𝔼NC𝔼NABtwnBCCBtwnBAABtwnCBCBtwnAB
6 3ancomb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼NB𝔼N
7 btwnswapid NA𝔼NC𝔼NB𝔼NABtwnCBCBtwnABA=C
8 6 7 sylan2b NA𝔼NB𝔼NC𝔼NABtwnCBCBtwnABA=C
9 5 8 sylbid NA𝔼NB𝔼NC𝔼NABtwnBCCBtwnBAA=C