Metamath Proof Explorer


Theorem caovassg

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovassg.1 φxSySzSxFyFz=xFyFz
Assertion caovassg φASBSCSAFBFC=AFBFC

Proof

Step Hyp Ref Expression
1 caovassg.1 φxSySzSxFyFz=xFyFz
2 1 ralrimivvva φxSySzSxFyFz=xFyFz
3 oveq1 x=AxFy=AFy
4 3 oveq1d x=AxFyFz=AFyFz
5 oveq1 x=AxFyFz=AFyFz
6 4 5 eqeq12d x=AxFyFz=xFyFzAFyFz=AFyFz
7 oveq2 y=BAFy=AFB
8 7 oveq1d y=BAFyFz=AFBFz
9 oveq1 y=ByFz=BFz
10 9 oveq2d y=BAFyFz=AFBFz
11 8 10 eqeq12d y=BAFyFz=AFyFzAFBFz=AFBFz
12 oveq2 z=CAFBFz=AFBFC
13 oveq2 z=CBFz=BFC
14 13 oveq2d z=CAFBFz=AFBFC
15 12 14 eqeq12d z=CAFBFz=AFBFzAFBFC=AFBFC
16 6 11 15 rspc3v ASBSCSxSySzSxFyFz=xFyFzAFBFC=AFBFC
17 2 16 mpan9 φASBSCSAFBFC=AFBFC