Metamath Proof Explorer


Theorem caovdig

Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis caovdig.1 φxKySzSxGyFz=xGyHxGz
Assertion caovdig φAKBSCSAGBFC=AGBHAGC

Proof

Step Hyp Ref Expression
1 caovdig.1 φxKySzSxGyFz=xGyHxGz
2 1 ralrimivvva φxKySzSxGyFz=xGyHxGz
3 oveq1 x=AxGyFz=AGyFz
4 oveq1 x=AxGy=AGy
5 oveq1 x=AxGz=AGz
6 4 5 oveq12d x=AxGyHxGz=AGyHAGz
7 3 6 eqeq12d x=AxGyFz=xGyHxGzAGyFz=AGyHAGz
8 oveq1 y=ByFz=BFz
9 8 oveq2d y=BAGyFz=AGBFz
10 oveq2 y=BAGy=AGB
11 10 oveq1d y=BAGyHAGz=AGBHAGz
12 9 11 eqeq12d y=BAGyFz=AGyHAGzAGBFz=AGBHAGz
13 oveq2 z=CBFz=BFC
14 13 oveq2d z=CAGBFz=AGBFC
15 oveq2 z=CAGz=AGC
16 15 oveq2d z=CAGBHAGz=AGBHAGC
17 14 16 eqeq12d z=CAGBFz=AGBHAGzAGBFC=AGBHAGC
18 7 12 17 rspc3v AKBSCSxKySzSxGyFz=xGyHxGzAGBFC=AGBHAGC
19 2 18 mpan9 φAKBSCSAGBFC=AGBHAGC