Metamath Proof Explorer


Theorem caovord

Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses caovord.1 AV
caovord.2 BV
caovord.3 zSxRyzFxRzFy
Assertion caovord CSARBCFARCFB

Proof

Step Hyp Ref Expression
1 caovord.1 AV
2 caovord.2 BV
3 caovord.3 zSxRyzFxRzFy
4 oveq1 z=CzFA=CFA
5 oveq1 z=CzFB=CFB
6 4 5 breq12d z=CzFARzFBCFARCFB
7 6 bibi2d z=CARBzFARzFBARBCFARCFB
8 breq1 x=AxRyARy
9 oveq2 x=AzFx=zFA
10 9 breq1d x=AzFxRzFyzFARzFy
11 8 10 bibi12d x=AxRyzFxRzFyARyzFARzFy
12 breq2 y=BARyARB
13 oveq2 y=BzFy=zFB
14 13 breq2d y=BzFARzFyzFARzFB
15 12 14 bibi12d y=BARyzFARzFyARBzFARzFB
16 11 15 sylan9bb x=Ay=BxRyzFxRzFyARBzFARzFB
17 16 imbi2d x=Ay=BzSxRyzFxRzFyzSARBzFARzFB
18 1 2 17 3 vtocl2 zSARBzFARzFB
19 7 18 vtoclga CSARBCFARCFB