Metamath Proof Explorer


Theorem catcid

Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catccatid.c C=CatCatU
catccatid.b B=BaseC
catcid.o 1˙=IdC
catcid.i I=idfuncX
catcid.u φUV
catcid.x φXB
Assertion catcid φ1˙X=I

Proof

Step Hyp Ref Expression
1 catccatid.c C=CatCatU
2 catccatid.b B=BaseC
3 catcid.o 1˙=IdC
4 catcid.i I=idfuncX
5 catcid.u φUV
6 catcid.x φXB
7 1 2 catccatid UVCCatIdC=xBidfuncx
8 5 7 syl φCCatIdC=xBidfuncx
9 8 simprd φIdC=xBidfuncx
10 3 9 eqtrid φ1˙=xBidfuncx
11 simpr φx=Xx=X
12 11 fveq2d φx=Xidfuncx=idfuncX
13 fvexd φidfuncXV
14 10 12 6 13 fvmptd φ1˙X=idfuncX
15 14 4 eqtr4di φ1˙X=I