Metamath Proof Explorer


Theorem catidex

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidex.b B=BaseC
catidex.h H=HomC
catidex.o ·˙=compC
catidex.c φCCat
catidex.x φXB
Assertion catidex φgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f

Proof

Step Hyp Ref Expression
1 catidex.b B=BaseC
2 catidex.h H=HomC
3 catidex.o ·˙=compC
4 catidex.c φCCat
5 catidex.x φXB
6 id x=Xx=X
7 6 6 oveq12d x=XxHx=XHX
8 oveq2 x=XyHx=yHX
9 opeq2 x=Xyx=yX
10 9 6 oveq12d x=Xyx·˙x=yX·˙X
11 10 oveqd x=Xgyx·˙xf=gyX·˙Xf
12 11 eqeq1d x=Xgyx·˙xf=fgyX·˙Xf=f
13 8 12 raleqbidv x=XfyHxgyx·˙xf=ffyHXgyX·˙Xf=f
14 oveq1 x=XxHy=XHy
15 6 6 opeq12d x=Xxx=XX
16 15 oveq1d x=Xxx·˙y=XX·˙y
17 16 oveqd x=Xfxx·˙yg=fXX·˙yg
18 17 eqeq1d x=Xfxx·˙yg=ffXX·˙yg=f
19 14 18 raleqbidv x=XfxHyfxx·˙yg=ffXHyfXX·˙yg=f
20 13 19 anbi12d x=XfyHxgyx·˙xf=ffxHyfxx·˙yg=ffyHXgyX·˙Xf=ffXHyfXX·˙yg=f
21 20 ralbidv x=XyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
22 7 21 rexeqbidv x=XgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
23 1 2 3 iscat CCatCCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
24 23 ibi CCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
25 simpl gxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
26 25 ralimi xBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
27 4 24 26 3syl φxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
28 22 27 5 rspcdva φgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f