Metamath Proof Explorer


Theorem catprslem

Description: Lemma for catprs . (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1 φxByBx˙yxHy
catprslem.x φXB
catprslem.y φYB
Assertion catprslem φX˙YXHY

Proof

Step Hyp Ref Expression
1 catprs.1 φxByBx˙yxHy
2 catprslem.x φXB
3 catprslem.y φYB
4 breq1 x=zx˙yz˙y
5 oveq1 x=zxHy=zHy
6 5 neeq1d x=zxHyzHy
7 4 6 bibi12d x=zx˙yxHyz˙yzHy
8 breq2 y=wz˙yz˙w
9 oveq2 y=wzHy=zHw
10 9 neeq1d y=wzHyzHw
11 8 10 bibi12d y=wz˙yzHyz˙wzHw
12 7 11 cbvral2vw xByBx˙yxHyzBwBz˙wzHw
13 1 12 sylib φzBwBz˙wzHw
14 breq12 z=Xw=Yz˙wX˙Y
15 oveq12 z=Xw=YzHw=XHY
16 15 neeq1d z=Xw=YzHwXHY
17 14 16 bibi12d z=Xw=Yz˙wzHwX˙YXHY
18 17 rspc2gv XBYBzBwBz˙wzHwX˙YXHY
19 2 3 18 syl2anc φzBwBz˙wzHwX˙YXHY
20 13 19 mpd φX˙YXHY