Metamath Proof Explorer


Theorem cbncms

Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007) Use bncmet (or preferably bncms ) instead. (New usage is discouraged.)

Ref Expression
Hypotheses iscbn.x X=BaseSetU
iscbn.8 D=IndMetU
Assertion cbncms UCBanDCMetX

Proof

Step Hyp Ref Expression
1 iscbn.x X=BaseSetU
2 iscbn.8 D=IndMetU
3 1 2 iscbn UCBanUNrmCVecDCMetX
4 3 simprbi UCBanDCMetX