Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1 j=kB=C
Assertion cbvesumv *jAB=*kAC

Proof

Step Hyp Ref Expression
1 cbvesum.1 j=kB=C
2 nfcv _kA
3 nfcv _jA
4 nfcv _kB
5 nfcv _jC
6 1 2 3 4 5 cbvesum *jAB=*kAC