Metamath Proof Explorer


Theorem cbvitgv

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis cbvitg.1 x=yB=C
Assertion cbvitgv ABdx=ACdy

Proof

Step Hyp Ref Expression
1 cbvitg.1 x=yB=C
2 nfcv _yB
3 nfcv _xC
4 1 2 3 cbvitg ABdx=ACdy