Metamath Proof Explorer


Theorem cbvoprab2

Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses cbvoprab2.1 wφ
cbvoprab2.2 yψ
cbvoprab2.3 y=wφψ
Assertion cbvoprab2 xyz|φ=xwz|ψ

Proof

Step Hyp Ref Expression
1 cbvoprab2.1 wφ
2 cbvoprab2.2 yψ
3 cbvoprab2.3 y=wφψ
4 nfv wv=xyz
5 4 1 nfan wv=xyzφ
6 5 nfex wzv=xyzφ
7 nfv yv=xwz
8 7 2 nfan yv=xwzψ
9 8 nfex yzv=xwzψ
10 opeq2 y=wxy=xw
11 10 opeq1d y=wxyz=xwz
12 11 eqeq2d y=wv=xyzv=xwz
13 12 3 anbi12d y=wv=xyzφv=xwzψ
14 13 exbidv y=wzv=xyzφzv=xwzψ
15 6 9 14 cbvexv1 yzv=xyzφwzv=xwzψ
16 15 exbii xyzv=xyzφxwzv=xwzψ
17 16 abbii v|xyzv=xyzφ=v|xwzv=xwzψ
18 df-oprab xyz|φ=v|xyzv=xyzφ
19 df-oprab xwz|ψ=v|xwzv=xwzψ
20 17 18 19 3eqtr4i xyz|φ=xwz|ψ