Metamath Proof Explorer


Theorem cbvoprab2davw

Description: Change the second bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab2davw.1 φ y = w ψ χ
Assertion cbvoprab2davw φ x y z | ψ = x w z | χ

Proof

Step Hyp Ref Expression
1 cbvoprab2davw.1 φ y = w ψ χ
2 opeq2 y = w x y = x w
3 2 adantl φ y = w x y = x w
4 3 opeq1d φ y = w x y z = x w z
5 4 eqeq2d φ y = w t = x y z t = x w z
6 5 1 anbi12d φ y = w t = x y z ψ t = x w z χ
7 6 exbidv φ y = w z t = x y z ψ z t = x w z χ
8 7 cbvexdvaw φ y z t = x y z ψ w z t = x w z χ
9 8 exbidv φ x y z t = x y z ψ x w z t = x w z χ
10 9 abbidv φ t | x y z t = x y z ψ = t | x w z t = x w z χ
11 df-oprab x y z | ψ = t | x y z t = x y z ψ
12 df-oprab x w z | χ = t | x w z t = x w z χ
13 10 11 12 3eqtr4g φ x y z | ψ = x w z | χ