Metamath Proof Explorer


Theorem cbvralf

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralfw when possible. (Contributed by NM, 7-Mar-2004) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralf.1 _xA
cbvralf.2 _yA
cbvralf.3 yφ
cbvralf.4 xψ
cbvralf.5 x=yφψ
Assertion cbvralf xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvralf.1 _xA
2 cbvralf.2 _yA
3 cbvralf.3 yφ
4 cbvralf.4 xψ
5 cbvralf.5 x=yφψ
6 nfv zxAφ
7 1 nfcri xzA
8 nfs1v xzxφ
9 7 8 nfim xzAzxφ
10 eleq1w x=zxAzA
11 sbequ12 x=zφzxφ
12 10 11 imbi12d x=zxAφzAzxφ
13 6 9 12 cbvalv1 xxAφzzAzxφ
14 2 nfcri yzA
15 3 nfsb yzxφ
16 14 15 nfim yzAzxφ
17 nfv zyAψ
18 eleq1w z=yzAyA
19 sbequ z=yzxφyxφ
20 4 5 sbie yxφψ
21 19 20 bitrdi z=yzxφψ
22 18 21 imbi12d z=yzAzxφyAψ
23 16 17 22 cbvalv1 zzAzxφyyAψ
24 13 23 bitri xxAφyyAψ
25 df-ral xAφxxAφ
26 df-ral yAψyyAψ
27 24 25 26 3bitr4i xAφyAψ