Metamath Proof Explorer


Theorem cbvreu

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvreuw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrmo.1 yφ
cbvrmo.2 xψ
cbvrmo.3 x=yφψ
Assertion cbvreu ∃!xAφ∃!yAψ

Proof

Step Hyp Ref Expression
1 cbvrmo.1 yφ
2 cbvrmo.2 xψ
3 cbvrmo.3 x=yφψ
4 nfv zxAφ
5 4 sb8eu ∃!xxAφ∃!zzxxAφ
6 sban zxxAφzxxAzxφ
7 6 eubii ∃!zzxxAφ∃!zzxxAzxφ
8 clelsb1 zxxAzA
9 8 anbi1i zxxAzxφzAzxφ
10 9 eubii ∃!zzxxAzxφ∃!zzAzxφ
11 nfv yzA
12 1 nfsb yzxφ
13 11 12 nfan yzAzxφ
14 nfv zyAψ
15 eleq1w z=yzAyA
16 sbequ z=yzxφyxφ
17 2 3 sbie yxφψ
18 16 17 bitrdi z=yzxφψ
19 15 18 anbi12d z=yzAzxφyAψ
20 13 14 19 cbveu ∃!zzAzxφ∃!yyAψ
21 10 20 bitri ∃!zzxxAzxφ∃!yyAψ
22 5 7 21 3bitri ∃!xxAφ∃!yyAψ
23 df-reu ∃!xAφ∃!xxAφ
24 df-reu ∃!yAψ∃!yyAψ
25 22 23 24 3bitr4i ∃!xAφ∃!yAψ