Metamath Proof Explorer


Theorem cbvrex2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrex2vw when possible. (Contributed by FL, 2-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral2v.1 x=zφχ
cbvral2v.2 y=wχψ
Assertion cbvrex2v xAyBφzAwBψ

Proof

Step Hyp Ref Expression
1 cbvral2v.1 x=zφχ
2 cbvral2v.2 y=wχψ
3 1 rexbidv x=zyBφyBχ
4 3 cbvrexv xAyBφzAyBχ
5 2 cbvrexv yBχwBψ
6 5 rexbii zAyBχzAwBψ
7 4 6 bitri xAyBφzAwBψ