Metamath Proof Explorer


Theorem cbvriotaw

Description: Change bound variable in a restricted description binder. Version of cbvriota with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Mar-2013) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses cbvriotaw.1 yφ
cbvriotaw.2 xψ
cbvriotaw.3 x=yφψ
Assertion cbvriotaw ιxA|φ=ιyA|ψ

Proof

Step Hyp Ref Expression
1 cbvriotaw.1 yφ
2 cbvriotaw.2 xψ
3 cbvriotaw.3 x=yφψ
4 eleq1w x=zxAzA
5 sbequ12 x=zφzxφ
6 4 5 anbi12d x=zxAφzAzxφ
7 nfv zxAφ
8 nfv xzA
9 nfs1v xzxφ
10 8 9 nfan xzAzxφ
11 6 7 10 cbviotaw ιx|xAφ=ιz|zAzxφ
12 eleq1w z=yzAyA
13 2 3 sbhypf z=yzxφψ
14 12 13 anbi12d z=yzAzxφyAψ
15 nfv yzA
16 1 nfsbv yzxφ
17 15 16 nfan yzAzxφ
18 nfv zyAψ
19 14 17 18 cbviotaw ιz|zAzxφ=ιy|yAψ
20 11 19 eqtri ιx|xAφ=ιy|yAψ
21 df-riota ιxA|φ=ιx|xAφ
22 df-riota ιyA|ψ=ιy|yAψ
23 20 21 22 3eqtr4i ιxA|φ=ιyA|ψ