Metamath Proof Explorer


Theorem ccat1st1st

Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if W is the empty word. (Contributed by AV, 26-Mar-2022)

Ref Expression
Assertion ccat1st1st W Word V W ++ ⟨“ W 0 ”⟩ 0 = W 0

Proof

Step Hyp Ref Expression
1 hasheq0 W Word V W = 0 W =
2 1 biimpa W Word V W = 0 W =
3 s1cli ⟨“ ”⟩ Word V
4 ccatlid ⟨“ ”⟩ Word V ++ ⟨“ ”⟩ = ⟨“ ”⟩
5 3 4 ax-mp ++ ⟨“ ”⟩ = ⟨“ ”⟩
6 5 fveq1i ++ ⟨“ ”⟩ 0 = ⟨“ ”⟩ 0
7 0ex V
8 s1fv V ⟨“ ”⟩ 0 =
9 7 8 ax-mp ⟨“ ”⟩ 0 =
10 6 9 eqtri ++ ⟨“ ”⟩ 0 =
11 id W = W =
12 fveq1 W = W 0 = 0
13 0fv 0 =
14 12 13 eqtrdi W = W 0 =
15 14 s1eqd W = ⟨“ W 0 ”⟩ = ⟨“ ”⟩
16 11 15 oveq12d W = W ++ ⟨“ W 0 ”⟩ = ++ ⟨“ ”⟩
17 16 fveq1d W = W ++ ⟨“ W 0 ”⟩ 0 = ++ ⟨“ ”⟩ 0
18 10 17 14 3eqtr4a W = W ++ ⟨“ W 0 ”⟩ 0 = W 0
19 2 18 syl W Word V W = 0 W ++ ⟨“ W 0 ”⟩ 0 = W 0
20 1 necon3bid W Word V W 0 W
21 20 biimpa W Word V W 0 W
22 lennncl W Word V W W
23 21 22 syldan W Word V W 0 W
24 lbfzo0 0 0 ..^ W W
25 23 24 sylibr W Word V W 0 0 0 ..^ W
26 ccats1val1 W Word V 0 0 ..^ W W ++ ⟨“ W 0 ”⟩ 0 = W 0
27 25 26 syldan W Word V W 0 W ++ ⟨“ W 0 ”⟩ 0 = W 0
28 19 27 pm2.61dane W Word V W ++ ⟨“ W 0 ”⟩ 0 = W 0