Metamath Proof Explorer


Theorem ccat1st1st

Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if W is the empty word. (Contributed by AV, 26-Mar-2022)

Ref Expression
Assertion ccat1st1st WWordVW++⟨“W0”⟩0=W0

Proof

Step Hyp Ref Expression
1 hasheq0 WWordVW=0W=
2 1 biimpa WWordVW=0W=
3 s1cli ⟨“”⟩WordV
4 ccatlid ⟨“”⟩WordV++⟨“”⟩=⟨“”⟩
5 3 4 ax-mp ++⟨“”⟩=⟨“”⟩
6 5 fveq1i ++⟨“”⟩0=⟨“”⟩0
7 0ex V
8 s1fv V⟨“”⟩0=
9 7 8 ax-mp ⟨“”⟩0=
10 6 9 eqtri ++⟨“”⟩0=
11 id W=W=
12 fveq1 W=W0=0
13 0fv 0=
14 12 13 eqtrdi W=W0=
15 14 s1eqd W=⟨“W0”⟩=⟨“”⟩
16 11 15 oveq12d W=W++⟨“W0”⟩=++⟨“”⟩
17 16 fveq1d W=W++⟨“W0”⟩0=++⟨“”⟩0
18 10 17 14 3eqtr4a W=W++⟨“W0”⟩0=W0
19 2 18 syl WWordVW=0W++⟨“W0”⟩0=W0
20 1 necon3bid WWordVW0W
21 20 biimpa WWordVW0W
22 lennncl WWordVWW
23 21 22 syldan WWordVW0W
24 lbfzo0 00..^WW
25 23 24 sylibr WWordVW000..^W
26 ccats1val1 WWordV00..^WW++⟨“W0”⟩0=W0
27 25 26 syldan WWordVW0W++⟨“W0”⟩0=W0
28 19 27 pm2.61dane WWordVW++⟨“W0”⟩0=W0