Metamath Proof Explorer


Theorem ccatws1lenp1b

Description: The length of a word is N iff the length of the concatenation of the word with a singleton word is N + 1 . (Contributed by AV, 4-Mar-2022)

Ref Expression
Assertion ccatws1lenp1b WWordVN0W++⟨“X”⟩=N+1W=N

Proof

Step Hyp Ref Expression
1 ccatws1len WWordVW++⟨“X”⟩=W+1
2 1 adantr WWordVN0W++⟨“X”⟩=W+1
3 2 eqeq1d WWordVN0W++⟨“X”⟩=N+1W+1=N+1
4 lencl WWordVW0
5 4 nn0cnd WWordVW
6 5 adantr WWordVN0W
7 nn0cn N0N
8 7 adantl WWordVN0N
9 1cnd WWordVN01
10 6 8 9 addcan2d WWordVN0W+1=N+1W=N
11 3 10 bitrd WWordVN0W++⟨“X”⟩=N+1W=N