Metamath Proof Explorer


Theorem cdainflem

Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)

Ref Expression
Assertion cdainflem ABωAωBω

Proof

Step Hyp Ref Expression
1 unfi2 AωBωABω
2 sdomnen ABω¬ABω
3 1 2 syl AωBω¬ABω
4 3 con2i ABω¬AωBω
5 ianor ¬AωBω¬Aω¬Bω
6 relen Rel
7 6 brrelex1i ABωABV
8 ssun1 AAB
9 ssdomg ABVAABAAB
10 7 8 9 mpisyl ABωAAB
11 domentr AABABωAω
12 10 11 mpancom ABωAω
13 12 anim1i ABω¬AωAω¬Aω
14 bren2 AωAω¬Aω
15 13 14 sylibr ABω¬AωAω
16 15 ex ABω¬AωAω
17 ssun2 BAB
18 ssdomg ABVBABBAB
19 7 17 18 mpisyl ABωBAB
20 domentr BABABωBω
21 19 20 mpancom ABωBω
22 21 anim1i ABω¬BωBω¬Bω
23 bren2 BωBω¬Bω
24 22 23 sylibr ABω¬BωBω
25 24 ex ABω¬BωBω
26 16 25 orim12d ABω¬Aω¬BωAωBω
27 5 26 biimtrid ABω¬AωBωAωBω
28 4 27 mpd ABωAωBω