Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cdainflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi2 | |
|
2 | sdomnen | |
|
3 | 1 2 | syl | |
4 | 3 | con2i | |
5 | ianor | |
|
6 | relen | |
|
7 | 6 | brrelex1i | |
8 | ssun1 | |
|
9 | ssdomg | |
|
10 | 7 8 9 | mpisyl | |
11 | domentr | |
|
12 | 10 11 | mpancom | |
13 | 12 | anim1i | |
14 | bren2 | |
|
15 | 13 14 | sylibr | |
16 | 15 | ex | |
17 | ssun2 | |
|
18 | ssdomg | |
|
19 | 7 17 18 | mpisyl | |
20 | domentr | |
|
21 | 19 20 | mpancom | |
22 | 21 | anim1i | |
23 | bren2 | |
|
24 | 22 23 | sylibr | |
25 | 24 | ex | |
26 | 16 25 | orim12d | |
27 | 5 26 | biimtrid | |
28 | 4 27 | mpd | |