Metamath Proof Explorer


Theorem cdleme0moN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0moN KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rR=PR=Q

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simp23r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙r¬R˙W
8 neanior RPRQ¬R=PR=Q
9 simpl33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQ*rrAP˙r=Q˙r
10 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRA
11 10 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQRA
12 simprl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQRP
13 simprr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQRQ
14 simpl32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQR˙P˙Q
15 simpl1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQKHL
16 hlcvl KHLKCvLat
17 15 16 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQKCvLat
18 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rPA
19 18 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQPA
20 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rQA
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQQA
22 simpl31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQPQ
23 4 1 2 cvlsupr2 KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q
24 17 19 21 11 22 23 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQP˙R=Q˙RRPRQR˙P˙Q
25 12 13 14 24 mpbir3and KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQP˙R=Q˙R
26 simp1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rKHL
27 simp1r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rWH
28 simp21r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙r¬P˙W
29 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rPQ
30 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
31 26 27 18 28 20 29 30 syl222anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rUA
32 31 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQUA
33 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQKHLWH
34 simpl21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQPA¬P˙W
35 simpl22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQQA¬Q˙W
36 1 2 3 4 5 6 cdleme02N KHLWHPA¬P˙WQA¬Q˙WPQP˙U=Q˙UU˙W
37 36 simpld KHLWHPA¬P˙WQA¬Q˙WPQP˙U=Q˙U
38 33 34 35 22 37 syl121anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQP˙U=Q˙U
39 df-rmo *rAP˙r=Q˙r*rrAP˙r=Q˙r
40 oveq2 r=RP˙r=P˙R
41 oveq2 r=RQ˙r=Q˙R
42 40 41 eqeq12d r=RP˙r=Q˙rP˙R=Q˙R
43 oveq2 r=UP˙r=P˙U
44 oveq2 r=UQ˙r=Q˙U
45 43 44 eqeq12d r=UP˙r=Q˙rP˙U=Q˙U
46 42 45 rmoi *rAP˙r=Q˙rRAP˙R=Q˙RUAP˙U=Q˙UR=U
47 39 46 syl3an1br *rrAP˙r=Q˙rRAP˙R=Q˙RUAP˙U=Q˙UR=U
48 9 11 25 32 38 47 syl122anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQR=U
49 36 simprd KHLWHPA¬P˙WQA¬Q˙WPQU˙W
50 33 34 35 22 49 syl121anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQU˙W
51 48 50 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQR˙W
52 51 ex KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rRPRQR˙W
53 8 52 biimtrrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙r¬R=PR=QR˙W
54 7 53 mt3d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q*rrAP˙r=Q˙rR=PR=Q