Metamath Proof Explorer


Theorem cdleme11a

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 12-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
Assertion cdleme11a KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TS˙U=S˙T

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 simp3rr KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TU˙S˙T
8 simp1l KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TKHL
9 simp1 KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TKHLWH
10 simp2l KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TPA¬P˙W
11 simp2r KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TQAPQ
12 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
13 9 10 11 12 syl3anc KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TUA
14 simp3rl KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TTA
15 simp3ll KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TSA
16 simp2ll KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TPA
17 simp2rl KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TQA
18 simp3l KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TSA¬S˙W
19 1 2 3 4 5 6 cdleme0c KHLWHPAQASA¬S˙WUS
20 9 16 17 18 19 syl121anc KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TUS
21 1 2 4 hlatexchb1 KHLUATASAUSU˙S˙TS˙U=S˙T
22 8 13 14 15 20 21 syl131anc KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TU˙S˙TS˙U=S˙T
23 7 22 mpbid KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TS˙U=S˙T