| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme12.l |
|
| 2 |
|
cdleme12.j |
|
| 3 |
|
cdleme12.m |
|
| 4 |
|
cdleme12.a |
|
| 5 |
|
cdleme12.h |
|
| 6 |
|
cdleme12.u |
|
| 7 |
|
cdleme12.f |
|
| 8 |
|
cdleme12.g |
|
| 9 |
|
simp11l |
|
| 10 |
9
|
hllatd |
|
| 11 |
|
simp11 |
|
| 12 |
|
simp12l |
|
| 13 |
|
simp13l |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 5 6 14
|
cdleme0aa |
|
| 16 |
11 12 13 15
|
syl3anc |
|
| 17 |
14 2
|
latjidm |
|
| 18 |
10 16 17
|
syl2anc |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
simp33 |
|
| 21 |
|
simp21l |
|
| 22 |
14 4
|
atbase |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
simp22l |
|
| 25 |
14 4
|
atbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
14 2
|
latjcl |
|
| 28 |
10 23 26 27
|
syl3anc |
|
| 29 |
14 1 2
|
latleeqj2 |
|
| 30 |
10 16 28 29
|
syl3anc |
|
| 31 |
20 30
|
mpbid |
|
| 32 |
19 31
|
eqtr2d |
|
| 33 |
|
simp21 |
|
| 34 |
1 2 3 4 5 6 7
|
cdleme1 |
|
| 35 |
11 12 13 33 34
|
syl13anc |
|
| 36 |
|
simp22 |
|
| 37 |
1 2 3 4 5 6 8
|
cdleme1 |
|
| 38 |
11 12 13 36 37
|
syl13anc |
|
| 39 |
35 38
|
oveq12d |
|
| 40 |
14 2
|
latj4 |
|
| 41 |
10 23 26 16 16 40
|
syl122anc |
|
| 42 |
39 41
|
eqtr4d |
|
| 43 |
32 42
|
eqtr4d |
|
| 44 |
1 2 3 4 5 6 7 14
|
cdleme1b |
|
| 45 |
11 12 13 21 44
|
syl13anc |
|
| 46 |
1 2 3 4 5 6 8 14
|
cdleme1b |
|
| 47 |
11 12 13 24 46
|
syl13anc |
|
| 48 |
14 2
|
latj4 |
|
| 49 |
10 23 45 26 47 48
|
syl122anc |
|
| 50 |
43 49
|
eqtr2d |
|
| 51 |
14 2
|
latjcl |
|
| 52 |
10 45 47 51
|
syl3anc |
|
| 53 |
14 1 2
|
latleeqj2 |
|
| 54 |
10 52 28 53
|
syl3anc |
|
| 55 |
50 54
|
mpbird |
|
| 56 |
|
simp12 |
|
| 57 |
|
simp13 |
|
| 58 |
|
simp23l |
|
| 59 |
|
simp31 |
|
| 60 |
1 2 3 4 5 6 7
|
cdleme3fa |
|
| 61 |
11 56 57 33 58 59 60
|
syl132anc |
|
| 62 |
|
simp32 |
|
| 63 |
1 2 3 4 5 6 8
|
cdleme3fa |
|
| 64 |
11 56 57 36 58 62 63
|
syl132anc |
|
| 65 |
1 2 3 4 5 6 7 8
|
cdleme11l |
|
| 66 |
1 2 4
|
ps-1 |
|
| 67 |
9 61 64 65 21 24 66
|
syl132anc |
|
| 68 |
55 67
|
mpbid |
|