Metamath Proof Explorer


Theorem cdleme12

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. F and G represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme12 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G=U

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 simp1 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TKHLWH
10 simp21l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TPA
11 simp22 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TQA
12 simp31 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TSA¬S˙W
13 1 2 3 4 5 6 7 cdleme1 KHLWHPAQASA¬S˙WS˙F=S˙U
14 9 10 11 12 13 syl13anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F=S˙U
15 simp1l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TKHL
16 simp21 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TPA¬P˙W
17 simp23 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TPQ
18 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
19 9 16 11 17 18 syl112anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TUA
20 simp31l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TSA
21 2 4 hlatjcom KHLUASAU˙S=S˙U
22 15 19 20 21 syl3anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TU˙S=S˙U
23 14 22 eqtr4d KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F=U˙S
24 simp32 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TTA¬T˙W
25 1 2 3 4 5 6 8 cdleme1 KHLWHPAQATA¬T˙WT˙G=T˙U
26 9 10 11 24 25 syl13anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TT˙G=T˙U
27 simp32l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TTA
28 2 4 hlatjcom KHLUATAU˙T=T˙U
29 15 19 27 28 syl3anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TU˙T=T˙U
30 26 29 eqtr4d KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TT˙G=U˙T
31 23 30 oveq12d KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G=U˙S˙U˙T
32 simp33 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TST¬U˙S˙T
33 1 2 3 4 2llnma2 KHLSATAUAST¬U˙S˙TU˙S˙U˙T=U
34 15 20 27 19 32 33 syl131anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TU˙S˙U˙T=U
35 31 34 eqtrd KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G=U