Metamath Proof Explorer


Theorem cdleme12

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. F and G represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses cdleme12.l = ( le ‘ 𝐾 )
cdleme12.j = ( join ‘ 𝐾 )
cdleme12.m = ( meet ‘ 𝐾 )
cdleme12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme12.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme12.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme12.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
Assertion cdleme12 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( ( 𝑆 𝐹 ) ( 𝑇 𝐺 ) ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 cdleme12.l = ( le ‘ 𝐾 )
2 cdleme12.j = ( join ‘ 𝐾 )
3 cdleme12.m = ( meet ‘ 𝐾 )
4 cdleme12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme12.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme12.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme12.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑃𝐴 )
11 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑄𝐴 )
12 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
13 1 2 3 4 5 6 7 cdleme1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝑆 𝐹 ) = ( 𝑆 𝑈 ) )
14 9 10 11 12 13 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑆 𝐹 ) = ( 𝑆 𝑈 ) )
15 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝐾 ∈ HL )
16 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑃𝑄 )
18 1 2 3 4 5 6 lhpat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
19 9 16 11 17 18 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑈𝐴 )
20 simp31l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑆𝐴 )
21 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴 ) → ( 𝑈 𝑆 ) = ( 𝑆 𝑈 ) )
22 15 19 20 21 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑈 𝑆 ) = ( 𝑆 𝑈 ) )
23 14 22 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑆 𝐹 ) = ( 𝑈 𝑆 ) )
24 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) )
25 1 2 3 4 5 6 8 cdleme1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ) → ( 𝑇 𝐺 ) = ( 𝑇 𝑈 ) )
26 9 10 11 24 25 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑇 𝐺 ) = ( 𝑇 𝑈 ) )
27 simp32l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → 𝑇𝐴 )
28 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑇𝐴 ) → ( 𝑈 𝑇 ) = ( 𝑇 𝑈 ) )
29 15 19 27 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑈 𝑇 ) = ( 𝑇 𝑈 ) )
30 26 29 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑇 𝐺 ) = ( 𝑈 𝑇 ) )
31 23 30 oveq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( ( 𝑆 𝐹 ) ( 𝑇 𝐺 ) ) = ( ( 𝑈 𝑆 ) ( 𝑈 𝑇 ) ) )
32 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) )
33 1 2 3 4 2llnma2 ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ( 𝑈 𝑆 ) ( 𝑈 𝑇 ) ) = 𝑈 )
34 15 20 27 19 32 33 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( ( 𝑈 𝑆 ) ( 𝑈 𝑇 ) ) = 𝑈 )
35 31 34 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑈 ( 𝑆 𝑇 ) ) ) ) → ( ( 𝑆 𝐹 ) ( 𝑇 𝐺 ) ) = 𝑈 )