| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme12.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme12.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme12.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme12.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme12.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme12.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme12.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme12.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 9 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. HL ) |
| 10 |
9
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. Lat ) |
| 11 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. A ) |
| 13 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q e. A ) |
| 14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 15 |
1 2 3 4 5 6 14
|
cdleme0aa |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) ) |
| 16 |
11 12 13 15
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U e. ( Base ` K ) ) |
| 17 |
14 2
|
latjidm |
|- ( ( K e. Lat /\ U e. ( Base ` K ) ) -> ( U .\/ U ) = U ) |
| 18 |
10 16 17
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( U .\/ U ) = U ) |
| 19 |
18
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ T ) .\/ U ) ) |
| 20 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U .<_ ( S .\/ T ) ) |
| 21 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. A ) |
| 22 |
14 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 23 |
21 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. ( Base ` K ) ) |
| 24 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. A ) |
| 25 |
14 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. ( Base ` K ) ) |
| 27 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 28 |
10 23 26 27
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 29 |
14 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( U .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) ) ) |
| 30 |
10 16 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( U .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) ) ) |
| 31 |
20 30
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) ) |
| 32 |
19 31
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) = ( ( S .\/ T ) .\/ ( U .\/ U ) ) ) |
| 33 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
| 34 |
1 2 3 4 5 6 7
|
cdleme1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( S .\/ F ) = ( S .\/ U ) ) |
| 35 |
11 12 13 33 34
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ F ) = ( S .\/ U ) ) |
| 36 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
| 37 |
1 2 3 4 5 6 8
|
cdleme1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( T e. A /\ -. T .<_ W ) ) ) -> ( T .\/ G ) = ( T .\/ U ) ) |
| 38 |
11 12 13 36 37
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( T .\/ G ) = ( T .\/ U ) ) |
| 39 |
35 38
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) ) |
| 40 |
14 2
|
latj4 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ ( U e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) ) |
| 41 |
10 23 26 16 16 40
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) ) |
| 42 |
39 41
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( U .\/ U ) ) ) |
| 43 |
32 42
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) = ( ( S .\/ F ) .\/ ( T .\/ G ) ) ) |
| 44 |
1 2 3 4 5 6 7 14
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) ) |
| 45 |
11 12 13 21 44
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F e. ( Base ` K ) ) |
| 46 |
1 2 3 4 5 6 8 14
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) ) |
| 47 |
11 12 13 24 46
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> G e. ( Base ` K ) ) |
| 48 |
14 2
|
latj4 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ F e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ G e. ( Base ` K ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( F .\/ G ) ) ) |
| 49 |
10 23 45 26 47 48
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( F .\/ G ) ) ) |
| 50 |
43 49
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) ) |
| 51 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ G e. ( Base ` K ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
| 52 |
10 45 47 51
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
| 53 |
14 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ ( F .\/ G ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) ) ) |
| 54 |
10 52 28 53
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) ) ) |
| 55 |
50 54
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) .<_ ( S .\/ T ) ) |
| 56 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 57 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 58 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P =/= Q ) |
| 59 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 60 |
1 2 3 4 5 6 7
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F e. A ) |
| 61 |
11 56 57 33 58 59 60
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F e. A ) |
| 62 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
| 63 |
1 2 3 4 5 6 8
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) ) ) -> G e. A ) |
| 64 |
11 56 57 36 58 62 63
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> G e. A ) |
| 65 |
1 2 3 4 5 6 7 8
|
cdleme11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F =/= G ) |
| 66 |
1 2 4
|
ps-1 |
|- ( ( K e. HL /\ ( F e. A /\ G e. A /\ F =/= G ) /\ ( S e. A /\ T e. A ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( F .\/ G ) = ( S .\/ T ) ) ) |
| 67 |
9 61 64 65 21 24 66
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( F .\/ G ) = ( S .\/ T ) ) ) |
| 68 |
55 67
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) = ( S .\/ T ) ) |