Metamath Proof Explorer


Theorem cdleme11dN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l ˙ = K
cdleme11.j ˙ = join K
cdleme11.m ˙ = meet K
cdleme11.a A = Atoms K
cdleme11.h H = LHyp K
cdleme11.u U = P ˙ Q ˙ W
Assertion cdleme11dN K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T P ˙ S P ˙ T

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙ = K
2 cdleme11.j ˙ = join K
3 cdleme11.m ˙ = meet K
4 cdleme11.a A = Atoms K
5 cdleme11.h H = LHyp K
6 cdleme11.u U = P ˙ Q ˙ W
7 simp1 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T K HL W H P A ¬ P ˙ W Q A
8 simp2 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T S A ¬ S ˙ W T A P Q
9 simp32 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T ¬ S ˙ P ˙ Q
10 simp33 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T U ˙ S ˙ T
11 1 2 3 4 5 6 cdleme11c K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T ¬ P ˙ S ˙ T
12 7 8 9 10 11 syl112anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T ¬ P ˙ S ˙ T
13 simp11l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T K HL
14 simp12l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T P A
15 simp21l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T S A
16 1 2 4 hlatlej2 K HL P A S A S ˙ P ˙ S
17 13 14 15 16 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T S ˙ P ˙ S
18 breq2 P ˙ S = P ˙ T S ˙ P ˙ S S ˙ P ˙ T
19 17 18 syl5ibcom K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T P ˙ S = P ˙ T S ˙ P ˙ T
20 simp22 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T T A
21 simp31 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T S T
22 1 2 4 hlatexch2 K HL S A P A T A S T S ˙ P ˙ T P ˙ S ˙ T
23 13 15 14 20 21 22 syl131anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T S ˙ P ˙ T P ˙ S ˙ T
24 19 23 syld K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T P ˙ S = P ˙ T P ˙ S ˙ T
25 24 necon3bd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T ¬ P ˙ S ˙ T P ˙ S P ˙ T
26 12 25 mpd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W T A P Q S T ¬ S ˙ P ˙ Q U ˙ S ˙ T P ˙ S P ˙ T