Metamath Proof Explorer


Theorem cdleme11dN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
Assertion cdleme11dN KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TP˙SP˙T

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 simp1 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKHLWHPA¬P˙WQA
8 simp2 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSA¬S˙WTAPQ
9 simp32 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬S˙P˙Q
10 simp33 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TU˙S˙T
11 1 2 3 4 5 6 cdleme11c KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙T¬P˙S˙T
12 7 8 9 10 11 syl112anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬P˙S˙T
13 simp11l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKHL
14 simp12l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TPA
15 simp21l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSA
16 1 2 4 hlatlej2 KHLPASAS˙P˙S
17 13 14 15 16 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TS˙P˙S
18 breq2 P˙S=P˙TS˙P˙SS˙P˙T
19 17 18 syl5ibcom KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TP˙S=P˙TS˙P˙T
20 simp22 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TTA
21 simp31 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TST
22 1 2 4 hlatexch2 KHLSAPATASTS˙P˙TP˙S˙T
23 13 15 14 20 21 22 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TS˙P˙TP˙S˙T
24 19 23 syld KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TP˙S=P˙TP˙S˙T
25 24 necon3bd KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬P˙S˙TP˙SP˙T
26 12 25 mpd KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TP˙SP˙T