Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme11.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme11.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme11.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme11.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ) |
8 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) |
9 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
10 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
11 |
1 2 3 4 5 6
|
cdleme11c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) |
12 |
7 8 9 10 11
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) |
13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ HL ) |
14 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ∈ 𝐴 ) |
15 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ 𝐴 ) |
16 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) ) |
18 |
|
breq2 |
⊢ ( ( 𝑃 ∨ 𝑆 ) = ( 𝑃 ∨ 𝑇 ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) ↔ 𝑆 ≤ ( 𝑃 ∨ 𝑇 ) ) ) |
19 |
17 18
|
syl5ibcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) = ( 𝑃 ∨ 𝑇 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑇 ) ) ) |
20 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ∈ 𝐴 ) |
21 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ≠ 𝑇 ) |
22 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ 𝑆 ≠ 𝑇 ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑇 ) → 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
23 |
13 15 14 20 21 22
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑇 ) → 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
24 |
19 23
|
syld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) = ( 𝑃 ∨ 𝑇 ) → 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
25 |
24
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ¬ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑃 ∨ 𝑇 ) ) ) |
26 |
12 25
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑃 ∨ 𝑇 ) ) |