Metamath Proof Explorer


Theorem cdleme11dN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l = ( le ‘ 𝐾 )
cdleme11.j = ( join ‘ 𝐾 )
cdleme11.m = ( meet ‘ 𝐾 )
cdleme11.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme11.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme11.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdleme11dN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( 𝑃 𝑆 ) ≠ ( 𝑃 𝑇 ) )

Proof

Step Hyp Ref Expression
1 cdleme11.l = ( le ‘ 𝐾 )
2 cdleme11.j = ( join ‘ 𝐾 )
3 cdleme11.m = ( meet ‘ 𝐾 )
4 cdleme11.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme11.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme11.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) )
8 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) )
9 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
10 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑈 ( 𝑆 𝑇 ) )
11 1 2 3 4 5 6 cdleme11c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ¬ 𝑃 ( 𝑆 𝑇 ) )
12 7 8 9 10 11 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ¬ 𝑃 ( 𝑆 𝑇 ) )
13 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝐾 ∈ HL )
14 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑃𝐴 )
15 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑆𝐴 )
16 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → 𝑆 ( 𝑃 𝑆 ) )
17 13 14 15 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑆 ( 𝑃 𝑆 ) )
18 breq2 ( ( 𝑃 𝑆 ) = ( 𝑃 𝑇 ) → ( 𝑆 ( 𝑃 𝑆 ) ↔ 𝑆 ( 𝑃 𝑇 ) ) )
19 17 18 syl5ibcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ( 𝑃 𝑆 ) = ( 𝑃 𝑇 ) → 𝑆 ( 𝑃 𝑇 ) ) )
20 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑇𝐴 )
21 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → 𝑆𝑇 )
22 1 2 4 hlatexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑃𝐴𝑇𝐴 ) ∧ 𝑆𝑇 ) → ( 𝑆 ( 𝑃 𝑇 ) → 𝑃 ( 𝑆 𝑇 ) ) )
23 13 15 14 20 21 22 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( 𝑆 ( 𝑃 𝑇 ) → 𝑃 ( 𝑆 𝑇 ) ) )
24 19 23 syld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ( 𝑃 𝑆 ) = ( 𝑃 𝑇 ) → 𝑃 ( 𝑆 𝑇 ) ) )
25 24 necon3bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( ¬ 𝑃 ( 𝑆 𝑇 ) → ( 𝑃 𝑆 ) ≠ ( 𝑃 𝑇 ) ) )
26 12 25 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴𝑃𝑄 ) ∧ ( 𝑆𝑇 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ) → ( 𝑃 𝑆 ) ≠ ( 𝑃 𝑇 ) )