Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme11.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme11.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme11.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme11.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
8 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ HL ) |
9 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ∈ 𝐴 ) |
10 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
12 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ∈ 𝐴 ) |
13 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ≠ 𝑄 ) |
14 |
1 2 3 4 5 6
|
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
15 |
10 11 12 13 14
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑈 ∈ 𝐴 ) |
16 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) |
17 |
8 9 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) |
19 |
12 13
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) |
20 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
21 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ∈ 𝐴 ) |
22 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
23 |
21 22
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑇 ∈ 𝐴 ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
24 |
1 2 3 4 5 6
|
cdleme11a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑆 ∨ 𝑈 ) = ( 𝑆 ∨ 𝑇 ) ) |
25 |
10 11 19 20 23 24
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∨ 𝑈 ) = ( 𝑆 ∨ 𝑇 ) ) |
26 |
25
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑈 ) ↔ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
27 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ 𝐴 ) |
28 |
1 2 3 4 5 6
|
cdleme0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑈 ≠ 𝑃 ) |
29 |
10 11 12 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑈 ≠ 𝑃 ) |
30 |
29
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ≠ 𝑈 ) |
31 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑈 ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑈 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
32 |
8 9 27 15 30 31
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑈 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
33 |
26 32
|
sylbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ) |
35 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
36 |
8 9 12 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
37 |
1 2 3 4 5 6
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
38 |
10 11 12 37
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
39 |
36 38
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
41 |
8
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ Lat ) |
42 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
43 |
42 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
44 |
27 43
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
45 |
42 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
46 |
12 45
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
47 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
8 9 15 47
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
42 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
50 |
41 44 46 48 49
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
51 |
50
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → ( ( 𝑆 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
52 |
34 40 51
|
mpbi2and |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ) |
53 |
42 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
54 |
9 53
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
55 |
42 1 2
|
latnlej1r |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑆 ≠ 𝑄 ) |
56 |
41 44 54 46 7 55
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ≠ 𝑄 ) |
57 |
1 2 4
|
ps-1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ≠ 𝑄 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( 𝑆 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) ) ) |
58 |
8 27 12 56 9 15 57
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( 𝑆 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → ( ( 𝑆 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( 𝑆 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) ) ) |
60 |
52 59
|
mpbid |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → ( 𝑆 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) ) |
61 |
18 60
|
breqtrrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ∧ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) → 𝑃 ≤ ( 𝑆 ∨ 𝑄 ) ) |
62 |
61
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) → 𝑃 ≤ ( 𝑆 ∨ 𝑄 ) ) ) |
63 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑄 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
64 |
8 9 27 12 13 63
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑄 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
65 |
62 64
|
syld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
66 |
7 65
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑃 ≤ ( 𝑆 ∨ 𝑇 ) ) |