| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme11.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme11.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme11.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme11.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme11.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme11.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. HL ) |
| 9 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. A ) |
| 10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 12 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q e. A ) |
| 13 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P =/= Q ) |
| 14 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
| 15 |
10 11 12 13 14
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U e. A ) |
| 16 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> P .<_ ( P .\/ U ) ) |
| 17 |
8 9 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P .<_ ( P .\/ U ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> P .<_ ( P .\/ U ) ) |
| 19 |
12 13
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( Q e. A /\ P =/= Q ) ) |
| 20 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
| 21 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. A ) |
| 22 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U .<_ ( S .\/ T ) ) |
| 23 |
21 22
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( T e. A /\ U .<_ ( S .\/ T ) ) ) |
| 24 |
1 2 3 4 5 6
|
cdleme11a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ U .<_ ( S .\/ T ) ) ) ) -> ( S .\/ U ) = ( S .\/ T ) ) |
| 25 |
10 11 19 20 23 24
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ U ) = ( S .\/ T ) ) |
| 26 |
25
|
breq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ U ) <-> P .<_ ( S .\/ T ) ) ) |
| 27 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. A ) |
| 28 |
1 2 3 4 5 6
|
cdleme0b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> U =/= P ) |
| 29 |
10 11 12 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U =/= P ) |
| 30 |
29
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P =/= U ) |
| 31 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ U e. A ) /\ P =/= U ) -> ( P .<_ ( S .\/ U ) -> S .<_ ( P .\/ U ) ) ) |
| 32 |
8 9 27 15 30 31
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ U ) -> S .<_ ( P .\/ U ) ) ) |
| 33 |
26 32
|
sylbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ T ) -> S .<_ ( P .\/ U ) ) ) |
| 34 |
33
|
imp |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> S .<_ ( P .\/ U ) ) |
| 35 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
| 36 |
8 9 12 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q .<_ ( P .\/ Q ) ) |
| 37 |
1 2 3 4 5 6
|
cdleme0cp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) |
| 38 |
10 11 12 37
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) |
| 39 |
36 38
|
breqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q .<_ ( P .\/ U ) ) |
| 40 |
39
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> Q .<_ ( P .\/ U ) ) |
| 41 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. Lat ) |
| 42 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 43 |
42 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 44 |
27 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. ( Base ` K ) ) |
| 45 |
42 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 46 |
12 45
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q e. ( Base ` K ) ) |
| 47 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 48 |
8 9 15 47
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 49 |
42 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( P .\/ U ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( P .\/ U ) /\ Q .<_ ( P .\/ U ) ) <-> ( S .\/ Q ) .<_ ( P .\/ U ) ) ) |
| 50 |
41 44 46 48 49
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .<_ ( P .\/ U ) /\ Q .<_ ( P .\/ U ) ) <-> ( S .\/ Q ) .<_ ( P .\/ U ) ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> ( ( S .<_ ( P .\/ U ) /\ Q .<_ ( P .\/ U ) ) <-> ( S .\/ Q ) .<_ ( P .\/ U ) ) ) |
| 52 |
34 40 51
|
mpbi2and |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> ( S .\/ Q ) .<_ ( P .\/ U ) ) |
| 53 |
42 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 54 |
9 53
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. ( Base ` K ) ) |
| 55 |
42 1 2
|
latnlej1r |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. S .<_ ( P .\/ Q ) ) -> S =/= Q ) |
| 56 |
41 44 54 46 7 55
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S =/= Q ) |
| 57 |
1 2 4
|
ps-1 |
|- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ S =/= Q ) /\ ( P e. A /\ U e. A ) ) -> ( ( S .\/ Q ) .<_ ( P .\/ U ) <-> ( S .\/ Q ) = ( P .\/ U ) ) ) |
| 58 |
8 27 12 56 9 15 57
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ Q ) .<_ ( P .\/ U ) <-> ( S .\/ Q ) = ( P .\/ U ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> ( ( S .\/ Q ) .<_ ( P .\/ U ) <-> ( S .\/ Q ) = ( P .\/ U ) ) ) |
| 60 |
52 59
|
mpbid |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> ( S .\/ Q ) = ( P .\/ U ) ) |
| 61 |
18 60
|
breqtrrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ P .<_ ( S .\/ T ) ) -> P .<_ ( S .\/ Q ) ) |
| 62 |
61
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ T ) -> P .<_ ( S .\/ Q ) ) ) |
| 63 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .<_ ( S .\/ Q ) -> S .<_ ( P .\/ Q ) ) ) |
| 64 |
8 9 27 12 13 63
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ Q ) -> S .<_ ( P .\/ Q ) ) ) |
| 65 |
62 64
|
syld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P .<_ ( S .\/ T ) -> S .<_ ( P .\/ Q ) ) ) |
| 66 |
7 65
|
mtod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. P .<_ ( S .\/ T ) ) |