Metamath Proof Explorer


Theorem cdleme19b

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D , F , G represent s_2, f(s), f(t). In their notation, we prove that if r <_ s \/ t, then s_2 <_ f(s) \/ f(t). (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
Assertion cdleme19b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD˙F˙G

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHL
12 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TRA
13 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA
14 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTA
15 simp33l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙P˙Q
16 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬S˙P˙Q
17 simp33r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙S˙T
18 1 2 3 4 5 6 7 8 9 10 cdleme19a KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TD=S˙T˙W
19 11 12 13 14 15 16 17 18 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD=S˙T˙W
20 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHLWH
21 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPA¬P˙W
22 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TQA¬Q˙W
23 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA¬S˙W
24 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTA¬T˙W
25 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPQST
26 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬T˙P˙Q
27 1 2 3 4 5 6 7 8 cdleme16 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QS˙T˙W=F˙G˙W
28 20 21 22 23 24 25 16 26 27 syl332anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TS˙T˙W=F˙G˙W
29 19 28 eqtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD=F˙G˙W
30 11 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKLat
31 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TWH
32 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPA
33 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TQA
34 eqid BaseK=BaseK
35 1 2 3 4 5 6 7 34 cdleme1b KHLWHPAQASAFBaseK
36 11 31 32 33 13 35 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TFBaseK
37 1 2 3 4 5 6 8 34 cdleme1b KHLWHPAQATAGBaseK
38 11 31 32 33 14 37 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TGBaseK
39 34 2 latjcl KLatFBaseKGBaseKF˙GBaseK
40 30 36 38 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙GBaseK
41 34 5 lhpbase WHWBaseK
42 31 41 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TWBaseK
43 34 1 3 latmle1 KLatF˙GBaseKWBaseKF˙G˙W˙F˙G
44 30 40 42 43 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙G˙W˙F˙G
45 29 44 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD˙F˙G