Metamath Proof Explorer


Theorem cdleme19b

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D , F , G represent s_2, f(s), f(t). In their notation, we prove that if r <_ s \/ t, then s_2 <_ f(s) \/ f(t). (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdleme19.l
|- .<_ = ( le ` K )
cdleme19.j
|- .\/ = ( join ` K )
cdleme19.m
|- ./\ = ( meet ` K )
cdleme19.a
|- A = ( Atoms ` K )
cdleme19.h
|- H = ( LHyp ` K )
cdleme19.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme19.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme19.g
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
cdleme19.d
|- D = ( ( R .\/ S ) ./\ W )
cdleme19.y
|- Y = ( ( R .\/ T ) ./\ W )
Assertion cdleme19b
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D .<_ ( F .\/ G ) )

Proof

Step Hyp Ref Expression
1 cdleme19.l
 |-  .<_ = ( le ` K )
2 cdleme19.j
 |-  .\/ = ( join ` K )
3 cdleme19.m
 |-  ./\ = ( meet ` K )
4 cdleme19.a
 |-  A = ( Atoms ` K )
5 cdleme19.h
 |-  H = ( LHyp ` K )
6 cdleme19.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme19.f
 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
8 cdleme19.g
 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
9 cdleme19.d
 |-  D = ( ( R .\/ S ) ./\ W )
10 cdleme19.y
 |-  Y = ( ( R .\/ T ) ./\ W )
11 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> K e. HL )
12 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R e. A )
13 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> S e. A )
14 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> T e. A )
15 simp33l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R .<_ ( P .\/ Q ) )
16 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> -. S .<_ ( P .\/ Q ) )
17 simp33r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R .<_ ( S .\/ T ) )
18 1 2 3 4 5 6 7 8 9 10 cdleme19a
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> D = ( ( S .\/ T ) ./\ W ) )
19 11 12 13 14 15 16 17 18 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D = ( ( S .\/ T ) ./\ W ) )
20 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( K e. HL /\ W e. H ) )
21 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
22 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
23 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( S e. A /\ -. S .<_ W ) )
24 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( T e. A /\ -. T .<_ W ) )
25 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( P =/= Q /\ S =/= T ) )
26 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> -. T .<_ ( P .\/ Q ) )
27 1 2 3 4 5 6 7 8 cdleme16
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) )
28 20 21 22 23 24 25 16 26 27 syl332anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) )
29 19 28 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D = ( ( F .\/ G ) ./\ W ) )
30 11 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> K e. Lat )
31 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> W e. H )
32 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> P e. A )
33 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> Q e. A )
34 eqid
 |-  ( Base ` K ) = ( Base ` K )
35 1 2 3 4 5 6 7 34 cdleme1b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) )
36 11 31 32 33 13 35 syl23anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> F e. ( Base ` K ) )
37 1 2 3 4 5 6 8 34 cdleme1b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) )
38 11 31 32 33 14 37 syl23anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> G e. ( Base ` K ) )
39 34 2 latjcl
 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ G e. ( Base ` K ) ) -> ( F .\/ G ) e. ( Base ` K ) )
40 30 36 38 39 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( F .\/ G ) e. ( Base ` K ) )
41 34 5 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
42 31 41 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> W e. ( Base ` K ) )
43 34 1 3 latmle1
 |-  ( ( K e. Lat /\ ( F .\/ G ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) )
44 30 40 42 43 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) )
45 29 44 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D .<_ ( F .\/ G ) )