Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
12 |
11
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
13 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A ) |
14 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
17 |
11 13 14 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
18 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. H ) |
19 |
15 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
20 |
18 19
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
21 |
15 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
22 |
12 17 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
23 |
9 22
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> D .<_ W ) |
24 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
25 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
26 |
24 25
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) |
27 |
1 2 3 4 5 6 7
|
cdleme3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. F .<_ W ) |
28 |
26 27
|
syld3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. F .<_ W ) |
29 |
|
nbrne2 |
|- ( ( D .<_ W /\ -. F .<_ W ) -> D =/= F ) |
30 |
23 28 29
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> D =/= F ) |
31 |
30
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F =/= D ) |