Metamath Proof Explorer


Theorem cdleme20i

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, antepenultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t). We show (f(s) \/ s_2) /\ (f(t) \/ t_2) <_ p \/ q. (Contributed by NM, 18-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20i KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHLWHPA¬P˙WQA¬Q˙W
13 simp22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TSA¬S˙W
14 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TTA¬T˙W
15 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TRA¬R˙W
16 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPQST
17 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q
18 simp322 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬T˙P˙Q
19 17 18 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q¬T˙P˙Q
20 simp323 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TR˙P˙Q
21 16 19 20 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q
22 1 2 3 4 5 6 7 8 9 10 11 cdleme20f KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G
23 12 13 14 15 21 22 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G
24 1 2 3 4 5 6 7 8 9 10 11 cdleme20h KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TS˙R˙T˙R˙S˙U˙T˙U=R˙U
25 1 2 3 4 5 6 7 8 9 10 11 cdleme20g KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S˙Y˙T˙S˙F˙T˙G=S˙R˙T˙R˙S˙U˙T˙U
26 12 13 14 15 21 25 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TD˙S˙Y˙T˙S˙F˙T˙G=S˙R˙T˙R˙S˙U˙T˙U
27 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHLWH
28 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPA
29 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TQA
30 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
31 27 28 29 15 20 30 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TP˙Q=R˙U
32 24 26 31 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TD˙S˙Y˙T˙S˙F˙T˙G=P˙Q
33 23 32 breqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y˙P˙Q