Metamath Proof Explorer


Theorem cdleme25dN

Description: Transform cdleme25c . (Contributed by NM, 19-Jan-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme24.b B=BaseK
cdleme24.l ˙=K
cdleme24.j ˙=joinK
cdleme24.m ˙=meetK
cdleme24.a A=AtomsK
cdleme24.h H=LHypK
cdleme24.u U=P˙Q˙W
cdleme24.f F=s˙U˙Q˙P˙s˙W
cdleme24.n N=P˙Q˙F˙R˙s˙W
Assertion cdleme25dN KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N

Proof

Step Hyp Ref Expression
1 cdleme24.b B=BaseK
2 cdleme24.l ˙=K
3 cdleme24.j ˙=joinK
4 cdleme24.m ˙=meetK
5 cdleme24.a A=AtomsK
6 cdleme24.h H=LHypK
7 cdleme24.u U=P˙Q˙W
8 cdleme24.f F=s˙U˙Q˙P˙s˙W
9 cdleme24.n N=P˙Q˙F˙R˙s˙W
10 1 2 3 4 5 6 7 8 9 cdleme25c KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N
11 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QKHL
12 11 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAKHL
13 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QWH
14 13 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAWH
15 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPA
16 15 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAPA
17 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QQA
18 17 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAQA
19 simpl2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsARA
20 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAsA
21 2 3 4 5 6 7 8 9 1 cdleme22gb KHLWHPAQARAsANB
22 12 14 16 18 19 20 21 syl222anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsANB
23 22 ex KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsANB
24 23 a1dd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QNB
25 24 ralrimiv KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QNB
26 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPA¬P˙W
27 simp13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QQA¬Q˙W
28 simp3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPQ
29 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙Q
30 11 13 26 27 28 29 syl221anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙Q
31 reusv2 sA¬s˙W¬s˙P˙QNBsA¬s˙W¬s˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N∃!uBsA¬s˙W¬s˙P˙Qu=N
32 25 30 31 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N∃!uBsA¬s˙W¬s˙P˙Qu=N
33 10 32 mpbird KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N