Metamath Proof Explorer


Theorem cdleme25dN

Description: Transform cdleme25c . (Contributed by NM, 19-Jan-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme24.b
|- B = ( Base ` K )
cdleme24.l
|- .<_ = ( le ` K )
cdleme24.j
|- .\/ = ( join ` K )
cdleme24.m
|- ./\ = ( meet ` K )
cdleme24.a
|- A = ( Atoms ` K )
cdleme24.h
|- H = ( LHyp ` K )
cdleme24.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme24.f
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdleme24.n
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) )
Assertion cdleme25dN
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E! u e. B E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ u = N ) )

Proof

Step Hyp Ref Expression
1 cdleme24.b
 |-  B = ( Base ` K )
2 cdleme24.l
 |-  .<_ = ( le ` K )
3 cdleme24.j
 |-  .\/ = ( join ` K )
4 cdleme24.m
 |-  ./\ = ( meet ` K )
5 cdleme24.a
 |-  A = ( Atoms ` K )
6 cdleme24.h
 |-  H = ( LHyp ` K )
7 cdleme24.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme24.f
 |-  F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdleme24.n
 |-  N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) )
10 1 2 3 4 5 6 7 8 9 cdleme25c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E! u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) )
11 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL )
12 11 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> K e. HL )
13 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> W e. H )
14 13 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> W e. H )
15 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> P e. A )
16 15 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> P e. A )
17 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> Q e. A )
18 17 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> Q e. A )
19 simpl2l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> R e. A )
20 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> s e. A )
21 2 3 4 5 6 7 8 9 1 cdleme22gb
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) /\ ( R e. A /\ s e. A ) ) -> N e. B )
22 12 14 16 18 19 20 21 syl222anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) /\ s e. A ) -> N e. B )
23 22 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( s e. A -> N e. B ) )
24 23 a1dd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( s e. A -> ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> N e. B ) ) )
25 24 ralrimiv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> N e. B ) )
26 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )
27 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
28 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> P =/= Q )
29 2 3 5 6 cdlemb2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) )
30 11 13 26 27 28 29 syl221anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) )
31 reusv2
 |-  ( ( A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> N e. B ) /\ E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) -> ( E! u e. B E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ u = N ) <-> E! u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) )
32 25 30 31 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( E! u e. B E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ u = N ) <-> E! u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) )
33 10 32 mpbird
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E! u e. B E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ u = N ) )