Metamath Proof Explorer


Theorem cdleme40n

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme40.b B=BaseK
cdleme40.l ˙=K
cdleme40.j ˙=joinK
cdleme40.m ˙=meetK
cdleme40.a A=AtomsK
cdleme40.h H=LHypK
cdleme40.u U=P˙Q˙W
cdleme40.e E=t˙U˙Q˙P˙t˙W
cdleme40.g G=P˙Q˙E˙s˙t˙W
cdleme40.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme40.n N=ifs˙P˙QID
cdleme40a1.y Y=P˙Q˙E˙R˙t˙W
cdleme40a1.c C=ιyB|tA¬t˙W¬t˙P˙Qy=Y
cdleme40.t T=v˙U˙Q˙P˙v˙W
cdleme40.f F=P˙Q˙T˙S˙v˙W
cdleme40a1.x X=P˙Q˙T˙u˙v˙W
cdleme40.o O=ιzB|vA¬v˙W¬v˙P˙Qz=X
cdleme40.v V=ifu˙P˙QO<˙
cdleme40a1.z Z=ιzB|vA¬v˙W¬v˙P˙Qz=F
Assertion cdleme40n KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSR/sNS/uV

Proof

Step Hyp Ref Expression
1 cdleme40.b B=BaseK
2 cdleme40.l ˙=K
3 cdleme40.j ˙=joinK
4 cdleme40.m ˙=meetK
5 cdleme40.a A=AtomsK
6 cdleme40.h H=LHypK
7 cdleme40.u U=P˙Q˙W
8 cdleme40.e E=t˙U˙Q˙P˙t˙W
9 cdleme40.g G=P˙Q˙E˙s˙t˙W
10 cdleme40.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
11 cdleme40.n N=ifs˙P˙QID
12 cdleme40a1.y Y=P˙Q˙E˙R˙t˙W
13 cdleme40a1.c C=ιyB|tA¬t˙W¬t˙P˙Qy=Y
14 cdleme40.t T=v˙U˙Q˙P˙v˙W
15 cdleme40.f F=P˙Q˙T˙S˙v˙W
16 cdleme40a1.x X=P˙Q˙T˙u˙v˙W
17 cdleme40.o O=ιzB|vA¬v˙W¬v˙P˙Qz=X
18 cdleme40.v V=ifu˙P˙QO<˙
19 cdleme40a1.z Z=ιzB|vA¬v˙W¬v˙P˙Qz=F
20 1 fvexi BV
21 nfv vKHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRS
22 nfcv _vR/sN
23 nfra1 vvA¬v˙W¬v˙P˙Qz=F
24 nfcv _vB
25 23 24 nfriota _vιzB|vA¬v˙W¬v˙P˙Qz=F
26 19 25 nfcxfr _vZ
27 22 26 nfne vR/sNZ
28 27 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvR/sNZ
29 19 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSZ=ιzB|vA¬v˙W¬v˙P˙Qz=F
30 neeq2 F=ZR/sNFR/sNZ
31 30 adantl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSF=ZR/sNFR/sNZ
32 simpl11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QKHLWH
33 simpl12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QPA¬P˙W
34 simpl13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QQA¬Q˙W
35 simpl21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QPQ
36 simpl22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QRA¬R˙W
37 simpl23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QSA¬S˙W
38 simpl3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR˙P˙QS˙P˙QRS
39 simprl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QvA
40 simprrl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q¬v˙W
41 simprrr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q¬v˙P˙Q
42 39 40 41 3jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QvA¬v˙W¬v˙P˙Q
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme40m KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sNF
44 32 33 34 35 36 37 38 42 43 syl332anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sNF
45 44 ex KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sNF
46 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSKHLWHPA¬P˙WQA¬Q˙W
47 simp23l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSSA
48 simp23r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRS¬S˙W
49 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSPQ
50 simp32 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSS˙P˙Q
51 1 2 3 4 5 6 7 14 15 19 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQS˙P˙QZB
52 46 47 48 49 50 51 syl122anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSZB
53 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSKHLWH
54 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSPA¬P˙W
55 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSQA¬Q˙W
56 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQvA¬v˙W¬v˙P˙Q
57 53 54 55 49 56 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q
58 21 28 29 31 45 52 57 riotasv3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSBVR/sNZ
59 20 58 mpan2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSR/sNZ
60 16 17 18 15 19 cdleme31sn1c SAS˙P˙QS/uV=Z
61 47 50 60 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSS/uV=Z
62 59 61 neeqtrrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSR/sNS/uV