Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme40.b | |
|
cdleme40.l | |
||
cdleme40.j | |
||
cdleme40.m | |
||
cdleme40.a | |
||
cdleme40.h | |
||
cdleme40.u | |
||
cdleme40.e | |
||
cdleme40.g | |
||
cdleme40.i | |
||
cdleme40.n | |
||
cdleme40a1.y | |
||
cdleme40a1.c | |
||
cdleme40.t | |
||
cdleme40.f | |
||
cdleme40a1.x | |
||
cdleme40.o | |
||
cdleme40.v | |
||
cdleme40a1.z | |
||
Assertion | cdleme40n | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme40.b | |
|
2 | cdleme40.l | |
|
3 | cdleme40.j | |
|
4 | cdleme40.m | |
|
5 | cdleme40.a | |
|
6 | cdleme40.h | |
|
7 | cdleme40.u | |
|
8 | cdleme40.e | |
|
9 | cdleme40.g | |
|
10 | cdleme40.i | |
|
11 | cdleme40.n | |
|
12 | cdleme40a1.y | |
|
13 | cdleme40a1.c | |
|
14 | cdleme40.t | |
|
15 | cdleme40.f | |
|
16 | cdleme40a1.x | |
|
17 | cdleme40.o | |
|
18 | cdleme40.v | |
|
19 | cdleme40a1.z | |
|
20 | 1 | fvexi | |
21 | nfv | |
|
22 | nfcv | |
|
23 | nfra1 | |
|
24 | nfcv | |
|
25 | 23 24 | nfriota | |
26 | 19 25 | nfcxfr | |
27 | 22 26 | nfne | |
28 | 27 | a1i | |
29 | 19 | a1i | |
30 | neeq2 | |
|
31 | 30 | adantl | |
32 | simpl11 | |
|
33 | simpl12 | |
|
34 | simpl13 | |
|
35 | simpl21 | |
|
36 | simpl22 | |
|
37 | simpl23 | |
|
38 | simpl3 | |
|
39 | simprl | |
|
40 | simprrl | |
|
41 | simprrr | |
|
42 | 39 40 41 | 3jca | |
43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | cdleme40m | |
44 | 32 33 34 35 36 37 38 42 43 | syl332anc | |
45 | 44 | ex | |
46 | simp1 | |
|
47 | simp23l | |
|
48 | simp23r | |
|
49 | simp21 | |
|
50 | simp32 | |
|
51 | 1 2 3 4 5 6 7 14 15 19 | cdleme25cl | |
52 | 46 47 48 49 50 51 | syl122anc | |
53 | simp11 | |
|
54 | simp12 | |
|
55 | simp13 | |
|
56 | 2 3 5 6 | cdlemb2 | |
57 | 53 54 55 49 56 | syl121anc | |
58 | 21 28 29 31 45 52 57 | riotasv3d | |
59 | 20 58 | mpan2 | |
60 | 16 17 18 15 19 | cdleme31sn1c | |
61 | 47 50 60 | syl2anc | |
62 | 59 61 | neeqtrrd | |