Metamath Proof Explorer


Theorem cdleme42mgN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT . f preserves join: f(r \/ s) = f(r) \/ s, p. 115 10th line from bottom. TODO: Use instead of cdleme42mN ? Combine with cdleme42mN ? (Contributed by NM, 20-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme41.b B=BaseK
cdleme41.l ˙=K
cdleme41.j ˙=joinK
cdleme41.m ˙=meetK
cdleme41.a A=AtomsK
cdleme41.h H=LHypK
cdleme41.u U=P˙Q˙W
cdleme41.d D=s˙U˙Q˙P˙s˙W
cdleme41.e E=t˙U˙Q˙P˙t˙W
cdleme41.g G=P˙Q˙E˙s˙t˙W
cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme41.n N=ifs˙P˙QID
cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme41.f F=xBifPQ¬x˙WOx
Assertion cdleme42mgN KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WFR˙S=FR˙FS

Proof

Step Hyp Ref Expression
1 cdleme41.b B=BaseK
2 cdleme41.l ˙=K
3 cdleme41.j ˙=joinK
4 cdleme41.m ˙=meetK
5 cdleme41.a A=AtomsK
6 cdleme41.h H=LHypK
7 cdleme41.u U=P˙Q˙W
8 cdleme41.d D=s˙U˙Q˙P˙s˙W
9 cdleme41.e E=t˙U˙Q˙P˙t˙W
10 cdleme41.g G=P˙Q˙E˙s˙t˙W
11 cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
12 cdleme41.n N=ifs˙P˙QID
13 cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme41.f F=xBifPQ¬x˙WOx
15 simpl1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WKHL
16 15 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WKLat
17 simprll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WRA
18 1 5 atbase RARB
19 17 18 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WRB
20 simprrl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WSA
21 1 5 atbase SASB
22 20 21 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WSB
23 16 19 22 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WKLatRBSB
24 1 3 latjcl KLatRBSBR˙SB
25 14 cdleme31id R˙SBP=QFR˙S=R˙S
26 24 25 sylan KLatRBSBP=QFR˙S=R˙S
27 14 cdleme31id RBP=QFR=R
28 27 3ad2antl2 KLatRBSBP=QFR=R
29 14 cdleme31id SBP=QFS=S
30 29 3ad2antl3 KLatRBSBP=QFS=S
31 28 30 oveq12d KLatRBSBP=QFR˙FS=R˙S
32 26 31 eqtr4d KLatRBSBP=QFR˙S=FR˙FS
33 23 32 sylan KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WP=QFR˙S=FR˙FS
34 simpll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWHPA¬P˙WQA¬Q˙W
35 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQPQ
36 simplrl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA¬R˙W
37 simplrr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA¬S˙W
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme42mN KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WFR˙S=FR˙FS
39 34 35 36 37 38 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FR˙FS
40 33 39 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WFR˙S=FR˙FS