Metamath Proof Explorer


Theorem cdleme48b

Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme48b KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX˙W=X˙W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 1 2 3 4 5 6 7 8 9 10 cdleme48fv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W
12 11 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX˙W=FS˙X˙W˙W
13 simp11 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWH
14 simp1 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWHPA¬P˙WQA¬Q˙W
15 simp3l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XSA¬S˙W
16 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFSA¬FS˙W
17 14 15 16 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFSA¬FS˙W
18 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXB
19 1 2 3 4 5 6 lhpelim KHLWHFSA¬FS˙WXBFS˙X˙W˙W=X˙W
20 13 17 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙X˙W˙W=X˙W
21 12 20 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX˙W=X˙W