Metamath Proof Explorer


Theorem cdlemefr44

Description: Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013)

Ref Expression
Hypotheses cdlemef44.b B=BaseK
cdlemef44.l ˙=K
cdlemef44.j ˙=joinK
cdlemef44.m ˙=meetK
cdlemef44.a A=AtomsK
cdlemef44.h H=LHypK
cdlemef44.u U=P˙Q˙W
cdlemef44.d D=t˙U˙Q˙P˙t˙W
cdlemef44.o O=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QIs/tD˙x˙W
cdlemef44.f F=xBifPQ¬x˙WOx
Assertion cdlemefr44 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFR=R/tD

Proof

Step Hyp Ref Expression
1 cdlemef44.b B=BaseK
2 cdlemef44.l ˙=K
3 cdlemef44.j ˙=joinK
4 cdlemef44.m ˙=meetK
5 cdlemef44.a A=AtomsK
6 cdlemef44.h H=LHypK
7 cdlemef44.u U=P˙Q˙W
8 cdlemef44.d D=t˙U˙Q˙P˙t˙W
9 cdlemef44.o O=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QIs/tD˙x˙W
10 cdlemef44.f F=xBifPQ¬x˙WOx
11 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
12 biid s˙P˙Qs˙P˙Q
13 vex sV
14 8 11 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
15 13 14 ax-mp s/tD=s˙U˙Q˙P˙s˙W
16 12 15 ifbieq2i ifs˙P˙QIs/tD=ifs˙P˙QIs˙U˙Q˙P˙s˙W
17 eqid R˙U˙Q˙P˙R˙W=R˙U˙Q˙P˙R˙W
18 1 2 3 4 5 6 7 11 16 9 10 17 cdlemefr31fv1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFR=R˙U˙Q˙P˙R˙W
19 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
20 8 17 cdleme31sc RAR/tD=R˙U˙Q˙P˙R˙W
21 19 20 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/tD=R˙U˙Q˙P˙R˙W
22 18 21 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFR=R/tD