Metamath Proof Explorer


Theorem cdlemefrs32fva1

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b B=BaseK
cdlemefrs27.l ˙=K
cdlemefrs27.j ˙=joinK
cdlemefrs27.m ˙=meetK
cdlemefrs27.a A=AtomsK
cdlemefrs27.h H=LHypK
cdlemefrs27.eq s=Rφψ
cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
cdleme29frs.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme29frs.f F=xBifPQ¬x˙WOx
Assertion cdlemefrs32fva1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψFR=R/sN

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B=BaseK
2 cdlemefrs27.l ˙=K
3 cdlemefrs27.j ˙=joinK
4 cdlemefrs27.m ˙=meetK
5 cdlemefrs27.a A=AtomsK
6 cdlemefrs27.h H=LHypK
7 cdlemefrs27.eq s=Rφψ
8 cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
9 cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
10 cdleme29frs.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
11 cdleme29frs.f F=xBifPQ¬x˙WOx
12 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψRA
13 1 5 atbase RARB
14 12 13 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψRB
15 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψPQ
16 simp2rr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙Wψ¬R˙W
17 10 11 cdleme31fv1s RBPQ¬R˙WFR=R/xO
18 14 15 16 17 syl12anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψFR=R/xO
19 1 2 3 4 5 6 7 8 9 10 cdlemefrs32fva KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/xO=R/sN
20 18 19 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψFR=R/sN