Metamath Proof Explorer


Theorem cdlemg12c

Description: The triples <. P , ( FP ) , ( F( GP ) ) >. and <. Q , ( FQ ) , ( F( GQ ) ) >. are axially perspective by dalaw . TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg12c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ G P ˙ Q ˙ G Q ˙ G P ˙ F G P ˙ G Q ˙ F G Q ˙ F G P ˙ P ˙ F G Q ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 1 2 3 4 5 6 7 cdlemg12b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q ˙ G P ˙ G Q ˙ F G P ˙ F G Q
9 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q K HL
10 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P A
11 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q K HL W H
12 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q G T
13 1 4 5 6 ltrnat K HL W H G T P A G P A
14 11 12 10 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q G P A
15 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q F T
16 1 4 5 6 ltrnat K HL W H F T G P A F G P A
17 11 15 14 16 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q F G P A
18 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q Q A
19 1 4 5 6 ltrnat K HL W H G T Q A G Q A
20 11 12 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q G Q A
21 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
22 11 15 12 18 21 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q F G Q A
23 1 2 3 4 dalaw K HL P A G P A F G P A Q A G Q A F G Q A P ˙ Q ˙ G P ˙ G Q ˙ F G P ˙ F G Q P ˙ G P ˙ Q ˙ G Q ˙ G P ˙ F G P ˙ G Q ˙ F G Q ˙ F G P ˙ P ˙ F G Q ˙ Q
24 9 10 14 17 18 20 22 23 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q ˙ G P ˙ G Q ˙ F G P ˙ F G Q P ˙ G P ˙ Q ˙ G Q ˙ G P ˙ F G P ˙ G Q ˙ F G Q ˙ F G P ˙ P ˙ F G Q ˙ Q
25 8 24 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ G P ˙ Q ˙ G Q ˙ G P ˙ F G P ˙ G Q ˙ F G Q ˙ F G P ˙ P ˙ F G Q ˙ Q