Metamath Proof Explorer


Theorem cdlemg12c

Description: The triples <. P , ( FP ) , ( F( GP ) ) >. and <. Q , ( FQ ) , ( F( GQ ) ) >. are axially perspective by dalaw . TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg12c KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 1 2 3 4 5 6 7 cdlemg12b KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QP˙Q˙GP˙GQ˙FGP˙FGQ
9 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QKHL
10 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QPA
11 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QKHLWH
12 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QGT
13 1 4 5 6 ltrnat KHLWHGTPAGPA
14 11 12 10 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QGPA
15 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QFT
16 1 4 5 6 ltrnat KHLWHFTGPAFGPA
17 11 15 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QFGPA
18 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QQA
19 1 4 5 6 ltrnat KHLWHGTQAGQA
20 11 12 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QGQA
21 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
22 11 15 12 18 21 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QFGQA
23 1 2 3 4 dalaw KHLPAGPAFGPAQAGQAFGQAP˙Q˙GP˙GQ˙FGP˙FGQP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q
24 9 10 14 17 18 20 22 23 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QP˙Q˙GP˙GQ˙FGP˙FGQP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q
25 8 24 mpd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q